74 research outputs found

    A complete study of electroactive polymers for energy scavenging: modelling and experiments

    Get PDF
    Recent progresses in ultra low power microelectronics propelled the development of several microsensors and particularly the self powered microsystems (SPMS). One of their limitations is their size and their autonomy due to short lifetime of the batteries available on the market. To ensure their ecological energetic autonomy, a promising alternative is to scavenge the ambient energy such as the mechanical one. Nowadays, few microgenerators operate at low frequency. They are often rigid structures that can perturb the application or the environment; none of them are perfectly flexible. Thus, our objective is to create a flexible, non-intrusive scavenger using electroactive polymers. The goal of this work is to design a generator which can provide typically 100 ?W to supply a low consumption system. We report in this paper an analytical model which predicts the energy produced by a simple electroactive membrane, and some promising experimental results.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/EDA-Publishing

    New DRIE-Patterned Electrets for Vibration Energy Harvesting

    Full text link
    This paper is about a new manufacturing process aimed at developing stable SiO2/Si3N4 patterned electrets using a Deep Reactive Ion Etching (DRIE) step for an application in electret-based Vibration Energy Harvesters (e-VEH). This process consists in forming continuous layers of SiO2/Si3N4 electrets in order to limit surface conduction phenomena and is a new way to see the problem of electret patterning. Experimental results prove that patterned electrets charged by a positive corona discharge show excellent stability with high surface charge densities that may reach 5mC/m^2 on 1.1\mu m-thick layers, even with fine patterning and harsh temperature conditions (up to 250{\deg}C). This paves the way to new e-VEH designs and manufacturing processes.Comment: Proc. European Energy Conference, 201

    Surface quality studies of high Tc_{c} superconductors of the Hg , Tl and Hgx_{x}Tl1−x_{1-x}-families: RBS and resonant C and O backscattering studies

    Get PDF
    The composition, crystallinity, uniformity, purity, and thermal stability of cuprate superconductors have been studied by Rutherford backscattering and channeling spectrometry, and 3.045 MeV He+^{+} oxygen non-Rutherford resonant scattering. Further experiments have been performed with 1.75 MeV H+^{+}carbon non-Rutherford resonant scattering. Three sets of samples were studied : HgBa2_{2}CuO(4+δ)_{(4+\delta)} (Hg1201), Hgx_{x}T11−x_{1-x}Ba2_{2}Ca2_{2}Cu3_{3}O(2n+δ)_{(2n+\delta)} (Hg,T1-1223) and T11.85_{1.85}Ba2_{2}CuO6_{6}/LaA103_{3} (T1-2201), either in bulk or as an epitaxial thin film. It was observed that the superconductors exhibit a metal deficiency near the surface, which is largely compensated by excess oxygen. Moreover, the samples are significantly contaminated with carbon within the probing region of the H+^+ beam. The thermal stability and surface degradation were studied in both oxidizing ambient and vacuum. As a general trend, the heavy metal deficiency — and consequently the compensating oxygen excess — is enhanced as the temperature increases

    Topological (Sliced) Doping of a 3D Peierls System: Predicted Structure of Doped BaBiO3

    Full text link
    At hole concentrations below x=0.4, Ba_(1-x)K_xBiO_3 is non-metallic. At x=0, pure BaBiO3 is a Peierls insulator. Very dilute holes create bipolaronic point defects in the Peierls order parameter. Here we find that the Rice-Sneddon version of Peierls theory predicts that more concentrated holes should form stacking faults (two-dimensional topological defects, called slices) in the Peierls order parameter. However, the long-range Coulomb interaction, left out of the Rice-Sneddon model, destabilizes slices in favor of point bipolarons at low concentrations, leaving a window near 30% doping where the sliced state is marginally stable.Comment: 6 pages with 5 embedded postscript figure

    Magnetoresistive study of antiferromagnetic--weak ferromagnetic transition in single-crystal La2_{2}CuO4+δ_{4+\delta}

    Full text link
    The resistive measurements were made to study the magnetic field-induced antiferromagnetic (AF) - weak ferromagnetic (WF) transition in La2_2CuO4_4 single-crystal. The magnetic field (DC or pulsed) was applied normally to the CuO2_2 layers. The transition manifested itself in a drastic decrease of the resistance in critical fields of ~5-7 T. The study is the first to display the effect of the AF -WF transition on the conductivity of the La2_2CuO4_4 single-crystal in the parallel - to - CuO2_2 layers direction. The results provide support for the 3-dimensional nature of the hopping conduction of this layered oxide.Comment: 8 pages, 7 figures, RevTe

    Phase diagram of the one-dimensional extended attractive Hubbard model for large nearest-neighbor repulsion

    Full text link
    We consider the extended Hubbard model with attractive on-site interaction U and nearest-neighbor repulsions V. We construct an effective Hamiltonian H_{eff} for hopping t<<V and arbitrary U<0. Retaining the most important terms, H_{eff} can be mapped onto two XXZ models, solved by the Bethe ansatz. The quantum phase diagram shows two Luttinger liquid phases and a region of phase separation between them. For density n<0.422 and U<-4, singlet superconducting correlations dominate at large distances. For some parameters, the results are in qualitative agreement with experiments in BaKBiO.Comment: 6 pages, 3 figures, submitted to Phys. Rev.

    Doping Dependence of the Electronic Structure of Ba_{1-x}K_{x}BiO_{3} Studied by X-Ray Absorption Spectroscopy

    Get PDF
    We have performed x-ray absorption spectroscopy (XAS) and x-ray photoemission spectroscopy (XPS) studies of single crystal Ba_{1-x}K_{x}BiO_{3} (BKBO) covering the whole composition range 0≤x≤0.600 \leq x \leq 0.60. Several features in the oxygen 1\textit{s} core XAS spectra show systematic changes with xx. Spectral weight around the absorption threshold increases with hole doping and shows a finite jump between x=0.30x=0.30 and 0.40, which signals the metal-insulator transition. We have compared the obtained results with band-structure calculations. Comparison with the XAS results of BaPb_{1-x}Bi_{x}O_{3} has revealed quite different doping dependences between BKBO and BPBO. We have also observed systematic core-level shifts in the XPS spectra as well as in the XAS threshold as functions of xx, which can be attributed to a chemical potential shift accompanying the hole doping. The observed chemical potential shift is found to be slower than that predicted by the rigid band model based on the band-structure calculations.Comment: 8 pages, 8 figures include

    X-Ray-Diffraction Study of Charge-Density-Waves and Oxygen-Ordering in YBa2Cu3O6+x Superconductor

    Full text link
    We report a temperature-dependent increase below 300 K of diffuse superlattice peaks corresponding to q_0 =(~2/5,0,0) in an under-doped YBa_2Cu_3O_6+x superconductor (x~0.63). These peaks reveal strong c-axis correlations involving the CuO_2 bilayers, show a non-uniform increase below \~220 K with a plateau for ~100-160 K, and appear to saturate in the superconducting phase. We interpret this unconventional T-dependence of the ``oxygen-ordering'' peaks as a manifestation of a charge density wave in the CuO_2 planes coupled to the oxygen-vacancy ordering.Comment: 4 pages, 4 figure
    • …
    corecore